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Summary. Taking into consideration nuclear motion in non-separable poten- 
tials, we have probed the solution of the Schr6dinger equation by random 
walk sampling in imaginary time on a two-dimensional example. Evaluation 
of the many-dimensional Franck-Condon overlap and the chemical species 
conversion rate is outlined. 
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I. Introduction 

Our aim in this paper is to prepare for further numerical exploration of local 
chemical processes in condensed systems or at interfaces [1, 2]. As a starting 
point of the following, we note that in the chemical species conversion probabil- 
ity expression 

P 2rt ( a ~ . b )  = -~ AvITba[23(AE "ab + AE), (1) 

the vibrational, or Franck-Condon overlap (qSblq~ ~ ) contained in the transition 
matrix elements Tb~, is not restricted to separable vibration states; ~b,, q~b are the 
vibration state functions of the initial and final state in diabatic or quasi-adia- 
batic potentials. In Eq. (1), AE rib is the change of vibration energy in the 
conversion process, AE the difference of total energy zero points of states (a) and 
(b), Av indicates thermal weighting. Taking into consideration general potential 
surface characteristics, the question of including non-separable anharmonic 
vibrations in the transition matrix treatment arises. 



138 W. Lorenz and O. Heitzsch 

Calculation of vibration states in non-separable systems has received much 
attention over the last decade [3-6]. Semiclassical quantization, as well as 
variational approximations using expansions in terms of  products of  harmonic 
functions reveal, in general, stable (or  regular) vibrations in lower quantum 
states. 

Pursuing the question raised above, we have applied a numerical random walk 
sampling technique for the ab initio solution of the Schr6dinger equation. This 
method was devised recently for the calculation of  many-electron total energies 
including electron correlation [7, 8], but it is also suited to vibration problems [9]. 
The method works as follows: in imaginary time t = treaS" i/h, the Schr6dinger 
equation assumes the form of  a diffusion equation 

049/~t = D V249 - V49, D = h2/21 ~. (2) 

Using a known trial wave function 49r, one gets a diffusion equation with a 
reaction and a drift term for the product function f ( t )  = 49(0 �9 49r: 

~f/Ot = D V2f - (EL -- Eref)f-- D v f r ,  (3) 

where E L = H49r/49 r is a local energy, Ere r a reference energy, and F = V ln]49r] 2 
a quantum drift velocity. The propagator  for Eq. (3) is the Green's function [8, 10] 

{ [ R ' - R - D A t ' F ( R ) ]  2} 
G(R, R', At) = (4riD At) -N/2 exp 4D At 

x exp{-[(EL(R) + EL(R'))/2 - Er~f] At}, (4) 

from which 

R '  r f (  , t + At) = I dRG(R, R ,  At)f(R, t) (5) 

is sampled. The total energy is obtained from (EL) .  N in (4) is the dimension of  
the vector space R. Propagation using Eqs. (4, 5) yields the stationary ground 
state; excited states are accessible, from, e.g., orthogonalization or fixed node 
constraints [7-9]. 

2. An example of vibration in anharmonic 2D potential surfaces 

As well as the total energy, we are particularly interested in the wave function 
49 =f/49r which can be sampled together with energy. We begin with considering 
the vibration ground state in a two-dimensional (2D) potential surface in cartesian 
coordinates. 

As a trial function 49r in Eqs. (3, 4) one may use the known solution of  the 
Schr6dinger equation with the separable hamiltonian: 

V 2 = ~2/~x2 + a2/@2; V = V l (x) + Vz(y ). (6) 

As an example we consider a superposition of  a Morse and a harmonic potential 
component: 

Vl (x) = Dl[ 1 -- exp( --ax)]2; Vz(y) = (k2/Z)yL (7) 
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D~ = k~/2a 2 is a bond dissociation energy, a is the anharmonicity constant, k are 
harmonic force constants. The x-coordinate may represent the reaction path  of 
ad iaba t i c  F ranck-Condon  model. Separability of  the vibrations in the potential 
(6, 7) holds when D1 and a are independent of  y, and k 2 is independent of  x. 

I f  one removes this constraint, e.g. by taking an x-dependent force constant 
k2(x ), one gets an additional non-separable potential component  II3: 

v = vl (x) + V2(y) + V~(x, y), (8) 

where V2 is given by (7) taken at x = 0. Let us assume the following simple form 
for k2: 

k2 = k2(0)(1 - bx). (9) 

One then obtains 

k2(0)b 
V3(x, y) = - - - - ~  xy 2, (10) 

which resembles a Henon-Heiles  potential (cf. also [3-6]). The valleys at bx > 1 
are not attained in the following sampling experiments. 

3. Calculations 

Quantum random walk sampling following Eqs. (3-5) may be illustrated on a 
system obeying Eqs. (6-10) with the following scaled parameter  values: 

kl = k2(0) = 1; D1 = 12.5; a = 0.2; h~o = 1; b = 0.05. (11) 

I f  we take energy and length units 0.2 eV and 10 pm, respectively, these parame- 
ters become k~ = k2(0 ) = 2000 eV nm -2 = 320 kg s - l ;  D~ = 2.5 eV; a = 20 nm-~;  
hco = 0.2 eV, corresponding to a reduced mass ~-2; b = 5 nm -1. With (11) the 
ground state function of a harmonic 1D mode is 

1D 
~ h a r m  = 0.7511 exp ( -x2 /2 ) ,  (12) 

and that of  a Morse 1D mode 

qSM .... (e - 1)! exp(-z/2)z~/2' (13) 

where ~ = 2kl/a2h~o - 1 = 49 and z = 50 exp ( -0 .2x ) .  The corresponding energy 
I D  I D  eigenvalues a r e  Eharm = 0.5 and EMorse = 0.495. 

Sampling the energy of the 1D Morse oscillator with the harmonic Eq. (12) 
as trial function, gave, for 500 configurations, a time step width At = 0.01, and 
27300 steps in 13 sections (for calculating the variance): 

E~,~ors~(sampled) = 0.49544 ___ 0.00036. 

Results for the 1D Morse wave function are shown in Fig. 1. Again using Eq. 
(12) as trial function, the sampled function ( f / c~T-  ~T) is compared with the 
exact difference (~b~ors ~ 1D -qShar~). When a smaller time step, At = 0.0033, was 
used the agreement on the positive branch x > 0, where the harmonic trial 
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Fig. 1. 1D harmonic and Morse ground-state function (top). Analytically calculated difference 
function ~D ]D (~bM .... --~bham~ ) from Eqs. (12, 13) (bottom, solid line) compared with sampled difference 
function (f/dp r -d~r) with ID ~b r = ~bharm. For parameter values and discussion see text. 30000 time 
steps in l0 sections, time step width At = 0.0033 are used 

function deviates increasingly f rom the Morse  function, was slightly better. A 
typical time-step dependence o f  sampled wave function values is illustrated in 
Fig. 2, These data  support  the reliability o f  the method.  

3.1. 2D vibration state 

Simulation o f  the 2D vibrat ion problem following Eqs. (6-10)  has been carried 
~bMor~e(X)~bharm(y ) as a trial function. This corresponds th rough  with the p roduc t  ~o ID 
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Fig. 2. Time step dependence  

of  the sampled  1D Morse  

funct ion 4~ =f/~Pr at  x = - 1.5 
(top) and  + 1.5 (bottom). The 

dotted line m a r k s  the exact  

Morse  funct ion  values  

to the neglect of V3 in Eq. (8). The corresponding ground state energy is 0.995. 
Sampling the full hamiltonian including V3 gave (with 500 configurations in 20 
runs of 2000 time steps of length At = 0.01): 

E 2D = 0.992996 +_ 0.000036. 

Figure 3 illustrates the evolution of the mean value E 2D and of the standard 
deviation from the 20 runs. The sampled mean value has lost its memory of the 
(arbitrary) initial distribution of configurations after s o m e  l 0  2 time steps. 

The 2D difference function (~b 2D- ~2D) was sampled in boxes 0.04 • 0.04. 
Figure 4 shows cross-sections of the 2D difference function parallel to the x-axis 
which, despite the relatively large variance, yield significant information about 
the order of magnitude of the effect of the non-separable potential component V 3 



142 W. Lorenz and O. Heitzsch 

energy 

0.9932 

0.9930 

0.9928 

0 I~ 16 t 

Fig. 3. Evolution of  the 
mean value, E 2D, and 
the standard deviation 
from 20 runs of  2000 
time steps of  length 
At = 0.01 

upon the wave function. For comparison, the value of the wave function at 
(0, 0), i.e. near its maximum, is q~(0, 0) ~ 0.55. 

3.2. Franck-Condon overlap 

The overlap of the vibration functions q~a, (~b on two potential surfaces can be 
expressed in terms of the corresponding trial functions and first-order correc- 
tions: 

(~)b ]~)a ) "~ ((~Tb I~)Ta ) + ((fiTb [ 0() + (fl [~DTa ), (14) 

where 

are assumed to be small (for the possible breakdown of this assumption see 
below). 

Equation (14) has been evaluated for two opposed potentials of equal form, 
following Sect. 3.1, but the opposed one with an anharmonicity constant 
a = -0 .2  and displaced along the x-coordinate by Ax. The following statements 
can be made. 

(a) The overlap of the trial functions (~TbI~Ta) (the first term of Eq. (14)) can 
be calculated without noticeable error by numerical integration. 

(b) The first-order correction terms in (14) equal 2(~rb [a), because the same 
potential forms are assumed for both cases. Calculation of this 2D integral has 
been performed on a grid. 
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Fig. 4. Cross-sections of the 2D difference function (4Zl) _ ~b~D) parallel to the x-axis, at y = 0, +0.4 
and +_0.8 (preliminary data). For [y[ ~> 2 the mean value of the difference function falls below the 
error limit. 20 runs of 1000 time steps of length At = 0.01 are used. Sampling is in boxes 0.04 x 0.04; 
the results are smooth by averaging over nearest-neighbour boxes. Improvement of data is possible 
at greater expense 

(c) Due  to increase o f  IV31 with increasing x, the relat ive devia t ion  o f  the tai l  o f  
the exact  wave funct ion 4~b f rom q~Tb increases. This  tail  enters  with increasing 
weight  into the over lap  integral  when the dis tance Ax becomes  large. Because o f  
increasing relat ive er ror  in the tails of  the difference funct ion co, the over lap  (q~ rblO~ ) 
becomes  less accura te  at  larger  d i sp lacement  o f  the bo th  poten t ia l  min ima.  

(d)  Thus,  a t  large Ax, the tails of  e(x, y) and  /~ = c((Ax- x, y) domina t e  the 
to ta l  F r a n c k - C o n d o n  over lap ,  and  the f i rs t -order  cor rec t ion  2<~9Tb [0() can be 
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Table L Franck-Condon overlap of the 2D trial functions and preliminary data for the first-order 
correction as a function of the spatial displacement Ax (see text) 

Ax a 0 2 4 5 6 

(~bTb [q~T~ ) 0.976 0.52 5.3 X 10 -2 10.0 X 10 -3 14.1 X 10 -4 
2(~bralCr b --0.01 +0.006 ~ 0.024-0.01 (0.4-t-0.2) x 10 -z (3-t-1) x 10 -3 (7.54-3) x 10 .4 

a Unit of length 10 pm 
b Mean value and variance of the Franck-Condon integral is calculated from mean values of a(x, y) 
from independent runs. The sampled difference function e(x, y) was set to zero in boxes with no 
configurations 
~ The negative sign at Ax = 0 is due to the greater weight of q~rb at x < 0 

large or  even larger than the trial funct ion overlap (~brbl~bro). The integral 
( / ? [ e )  must  then be added to (14). Alternatively (~bb[q~a) may  be calculated 
wi thout  decomposi t ion.  

Some F r a n k - C o n d o n  overlaps o f  separable trial functions and o f  first-order 
correct ions due to the non-separable  potential  componen t  II3 are given in Table 
1 for  different spatial displacements A x  of  the 2D potential  surfaces. The increase 
in the relative correct ion 2(~)Tb IO~)/((gTb [C~r a ) with increasing A x  is apparent .  
Great  care must  be taken with the extrapolat ion o f  these preliminary data  up to 
larger reactive transfer distances [ 11]. The present data  suggest the possibility o f  
significant corrections to F r a n k - C o n d o n  overlap due to the non-separable 
potential  component ,  even in ground-s ta te  transitions. 

4. Discussion 

Simulation o f  many-dimensional  wave functions and derived quantities is signifi- 
cantly more  expensive than that  o f  total energy. Several questions o f  a general 
nature  can however  be studied on this line, already on two-dimensional  model  
cases. 

The results o f  Sect. 3 provide a first clue to the effect o f  non-separable 
potential  componen ts  upon  vibrat ion energies, wave functions and F r a n c k - C o n -  
don  overlaps o f  vibrat ion g round  states, being relevant for large vibrat ion quan ta  
and low temperature.  Larger  non-separabil i ty effects are expected for excited 
vibrat ion states; extension o f  the present simulation technique to such cases is 
s t ra ightforward but more  expensive (as is the case for  any quan tum simulation). 
The present orientational  calculations were made  on 16-bit computers  and can be 
further  refined. 

F r o m  a theoretical point  o f  view, the following points may  briefly be 
addressed: 

(i) In principle, by means o f  the applied quan tum simulation, we obtain exact 
eigenstates o f  the Schr6dinger equat ion for non-separable (multidimensional)  
vibrations, within known  error  limits. We can presume that  these eigenstates are 
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relevant for F ranck-Condon  transitions except those with lifetimes of  the initial 
states <10  -9 to 10-12s. (For  these conditions incomplete relaxation after 
preceding reactive or dephasing processes, as well as interference from bimolecu- 
lar encounter comes into play.) 

(ii) The approach of the real-time evolution of vibrational wave packets in 
non-separable potentials (cf., e.g., [ 12]) is in certain respect complementary to the 
present one. A more detailed comparison requires knowledge of higher quantum 
states. 

(iii) Non-separable systems of  the type under discussion may have either 
semiclassical regularity or irregularity [4, 5]. Quantum behaviour under the 
condition of  semiclassical irregularity may be proved by following the present 
approach.  

The extension of  this study to low excited states is in progress. 
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